Hypoxia Is a Critical Parameter for Chondrogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells in Type I/III Collagen Sponges
نویسندگان
چکیده
Umbilical cord blood (UCB) is an attractive alternative to bone marrow for isolation of mesenchymal stem cells (MSCs) to treat articular cartilage defects. Here, we set out to determine the growth factors (bone morphogenetic protein 2 (BMP-2) and transforming growth factor-β (TGF-β1)) and oxygen tension effects during chondrogenesis of human UCB-MSCs for cartilage engineering. Chondrogenic differentiation was induced using 3D cultures in type I/III collagen sponges with chondrogenic factors in normoxia (21% O₂) or hypoxia (<5% O₂) for 7, 14 and 21 days. Our results show that UCB-MSCs can be committed to chondrogenesis in the presence of BMP-2+TGF-β1. Normoxia induced the highest levels of chondrocyte-specific markers. However, hypoxia exerted more benefit by decreasing collagen X and matrix metalloproteinase-13 (MMP13) expression, two chondrocyte hypertrophy markers. However, a better chondrogenesis was obtained by switching oxygen conditions, with seven days in normoxia followed by 14 days in hypoxia, since these conditions avoid hypertrophy of hUCB-MSC-derived chondrocytes while maintaining the expression of chondrocyte-specific markers observed in normoxia. Our study demonstrates that oxygen tension is a key factor for chondrogenesis and suggests that UBC-MSCs 3D-culture should begin in normoxia to obtain a more efficient chondrocyte differentiation before placing them in hypoxia for chondrocyte phenotype stabilization. UCB-MSCs are therefore a reliable source for cartilage engineering.
منابع مشابه
Differentiation of Somatic Unrestricted Cord Blood Stem Cells into Chondrocyte Cells
Purpose: To isolate and purify unrestricted somatic stem cells from human umbilical cord blood and evaluation of their differentiation into chondrocyte in vitro.Materials and Methods: In this study cells from human umbilical cord blood were isolated and plated in flask. Colonies were performed after one week. To determine the kind of cells, 100000 cells were analysed with flowcytometry. Twenty ...
متن کاملChondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells in collagen matrices for cartilage engineering
Umbilical cord blood (UCB) is a promising alternative source of mesenchymal stem cells (MSCs), because UCB-MSCs are abundant and harvesting them is a painless non-invasive procedure. Potential clinical applications of UCB-MSCs have been identified, but their ability for chondrogenic differentiation has not yet been fully evaluated. The aim of our work was to characterize and determine the chond...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملChondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy
Cartilage engineering is a new strategy for the treatment of cartilage damage due to osteoarthritis or trauma in humans. Racehorses are exposed to the same type of cartilage damage and the anatomical, cellular, and biochemical properties of their cartilage are comparable to those of human cartilage, making the horse an excellent model for the development of cartilage engineering. Human mesenchy...
متن کاملMultilineage Differentiation Activity by the Human Umbilical Vein-Derived Mesenchymal Stem Cells
Background: Mesenchymal stem cells (MSC) are a very promising transplantable stem cell source for a variety of cell replacement therapies. As the main source of MSC is bone marrow (BM), most of studies have been done on BM-derived MSC (BM-MSC). Umbilical cord (UC)-derived MSC (UC-MSC) which are recently introduced, is one of the good alternative source for these cells. The objective of this stu...
متن کامل